Overexpression of the Glyoxalase II Gene Leads to Enhanced Salinity Tolerance in Brassica Juncea
نویسندگان
چکیده
Engineering of salinity tolerance in agronomically important crop plants is required to increase their productivity by enabling them to grow in saline soils, which are otherwise left uncultivated. Since an increase in the enzymes of glyoxalase system has been shown to impart salinity tolerance in the model plant tobacco, we used the glyoxalase II gene for engineering salinity tolerance in an important oil yielding crop, Brassica juncea. The transgenic plants of B. juncea overexpressing the glyoxalase II gene showed higher salinity tolerance as compared to the untransformed control plants as observed by delayed senescence in leaf discs at 400 mM and 800 mM NaCl in T1 generation. The percentage of germination of the T2 transgenic seeds was higher at 150 mM and 200 mM NaCl as compared to the seeds of untransformed plants. This for the first time demonstrates the applicability of utilizing the glyoxalase II gene for enhanced salinity tolerance in an oilseed crop plant B. juncea.
منابع مشابه
Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance.
The glyoxalase pathway involving glyoxalase I (gly I) and glyoxalase II (gly II) enzymes is required for glutathione-based detoxification of methylglyoxal. We had earlier indicated the potential of gly I as a probable candidate gene in conferring salinity tolerance. We report here that overexpression of gly I+II together confers improved salinity tolerance, thus offering another effective strat...
متن کاملOverexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements.
Tocopherols (vitamin E) are lipid soluble antioxidants synthesized by plants and some cyanobacteria. We have earlier reported that overexpression of the gamma-tocopherol methyl transferase (gamma-TMT) gene from Arabidopsis thaliana in transgenic Brassica juncea plants resulted in an over six-fold increase in the level of alpha-tocopherol, the most active form of all the tocopherols. Tocopherol ...
متن کاملImproved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1
A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...
متن کاملDe Novo Assembly and Characterization of Stress Transcriptome in a Salinity-Tolerant Variety CS52 of Brassica juncea
Oilseed mustard, Brassica juncea, exhibits high levels of genetic variability for salinity tolerance. To obtain the global view of transcriptome and investigate the molecular basis of salinity tolerance in a salt-tolerant variety CS52 of B. juncea, we performed transcriptome sequencing of control and salt-stressed seedlings. De novo assembly of 184 million high-quality paired-end reads yielded ...
متن کاملIdentification and Characterization of a Glyoxalase I Gene in a Rapeseed Cultivar with Seed Thermotolerance
Glyoxalase I (GLYI) is a ubiquitous enzyme in all organisms that catalyzes the conversion of the potent cytotoxin methylglyoxal to S-D-lactoylglutathione. Although many reports suggest the importance of GLYI in the plant response to stress, its function in seeds requires further study. Here, we identified a heat-induced GLYI from Brassica napus seeds, BnGLYI, using a comparative proteomics appr...
متن کامل